
A Collective Communication Layer
for the Software Stack of Big Data Analytics

Bingjing Zhang
School of Informatics and Computing

Indiana University
Bloomington, IN, USA
zhangbj@indiana.edu

Abstract—The landscape of distributed computing is rapidly
evolving, with computers exhibiting increasing processing capa-
bilities with many-core architectures. Almost every field of science
is now data driven and requires analysis of massive datasets. The
algorithms for analytics such as machine learning can be used
to discover properties of a given dataset and make predictions
based on it. However, there is still a lack of simple and unified
programming frameworks for these data intensive applications,
and many existing efforts are designed with specialized means
to speed up individual algorithms. In this thesis research, a
distributed programming model, MapCollective, is defined so that
it can be easily applied to many machine learning algorithms.
Specifically, algorithms that fit the iterative computation model
can be easily parallelized with a unique collective communication
layer for efficient synchronization. In contrast to traditional
parallelization strategies that focus on handling high volume
input data, a lesser known challenge is that the shared model
data between parallel workers, is equally high volume in multi-
dimensions and required to be communicated continually during
the entire execution. This extends the understanding of data
aspects in computation from in-memory caching of input data
(e.g. iterative MapReduce model) to fine-grained synchronization
on model data (e.g. MapCollective model). A library called Harp
is developed as a Hadoop plugin to demonstrate that sophisticated
machine learning algorithms can be simply abstracted with
the MapCollective model and conveniently developed on top of
the MapReduce framework. K-means and Multi-Dimensional
Scaling (MDS) are tested over 4096 threads on the IU Big
Red II Supercomputer. The results show linear speedup with
an increasing number of parallel units.

I. INTRODUCTION

Data analytics is undergoing a revolution in many scientific
domains owing to the incredible volume of data. Processing
such huge data usually exceeds the capability of a single or
even a few machines and thus requires parallelization at an
unprecedented scale. Machine learning algorithms [1] are a
type of algorithm for analytics which produce a model that
generalizes beyond the training instances. They have been
widely used in computer vision, text mining, advertising,
recommender systems, network analysis, and genetics. Unfor-
tunately, scaling up these algorithms is challenging owing to
their prohibitive computation cost: not only the need to process
enormous training data in iterations, but also the requirement
to communicate a large model data continually in order to
derive a converged model result.

Many machine learning algorithms were implemented in
MapReduce [2][3][4][5]. However, these implementations suf-

fer from repeated slow disk communication. This motivated
the design of iterative MapReduce tools [6][7] which utilize
memory for data caching and communication and thus dras-
tically improve the performance of big data processing. Later
on these tools expanded rapidly and formed ecosystems of
software stacks, e.g. Apache Big Data Stack (ABDS) [8],
with different computation models which are not limited to
MapReduce and iterative MapReduce, but also include Graph
models.

While the contemporary tools were improved with in-
memory communication, observations show that the perfor-
mance of iterative machine learning applications still suffers
from the overhead of repeated large model data synchroniza-
tion. To solve this problem, a proposed approach is to use col-
lective communication [9] to improve the efficiency of model
synchronization. Many existing tools are designed with fixed
data abstractions and limited communication support. There-
fore a separate collective communication layer is introduced
which provides model data abstraction and optimized collec-
tive communication operations. It also defines a MapCollective
model which serves the diverse communication demands in
applications. To adapt to current ABDS, these enhancements
are designed as a plug-in to Hadoop called Harp [10]. With
improved expressiveness and excellent performance on collec-
tive communication, a high performance ABDS (HPC-ABDS)
can simultaneously support various applications.

On top of Harp, a machine learning library is built to
present the effectiveness of using collective communication in
machine learning applications. The focus is to understand the
features of the model data communication in the algorithms
and build the correct collective communication abstractions to
match the applications. K-means [11] and MDS [12] are two
examples.

In the following sections, Section 2 introduces related work.
Section 3 goes into details on the design of the Harp plug-in.
Section 4 presents the initial results of the machine learning
library. The conclusion is given in Section 5.

II. RELATED WORK

Initially MapReduce proved to be a very successful pro-
gramming model for large-scale data processing but was later
considered to be insufficient for supporting sophisticated ana-
lytics, especially those machine learning algorithms involving



iterations. Frameworks like Twister [6] and Spark [7] solved
this issue by caching intermediate data and developing the
iterative MapReduce model. Another iterative computation
model is the graph model, which abstracts data as vertices
and edges and executes in BSP (Bulk Synchronous Parallel)
style. Pregel [13], Giraph [14] and GraphLab [15] follow this
design. GraphLab was further enhanced with PowerGraph [16]
abstraction to reduce the communication overhead. In addition,
Parameter Server [17] and Petuum [18] allow users to program
machine learning algorithms with “push” and “pull” operations
on model data.

The main issue is that all these tools have little or no
support to model data abstraction or model data collective
communication. In Twister/Spark, the existing work focuses
on processing the input data efficiently. Although some re-
search work [19][20][21][22] tries to add or improve collective
communication operations, they are limited in operation types
and constrained by the computation flow. The model data is
viewed as a transient intermediate data and often required to be
gathered back to the client and redistributed again. As a result,
these tools don’t scale well for large model data problems.
In graph based tools, the training data abstractions and the
model data abstractions are mixed in a graph presentation.
The restriction of vertex/edge based communication limits
the possibility of using optimized collective communication.
In Parameter Server/Petuum, though model data abstractions
exist, the communication is abstracted at a low level and
requires further optimization.

III. HARP

The central idea of this research is to unify collective com-
munication abstractions, optimize collective communication
operations, and match them to machine learning applications.
There include the following contributions.

Firstly a collective communication library layer is abstracted
and separated out from other layers in the software stack of big
data processing. In this layer, a set of abstractions for model
data and related collective communication operations for syn-
chronization are defined. Data are horizontally abstracted as
arrays, key-values, or vertices/edges, and constructed from
basic types into partitions and tables vertically. Communi-
cation includes operations abstracted from MPI, MapReduce,
graph-based tools, and communication patterns from popular
machine learning frameworks.

Secondly, on top of this abstraction layer, the MapCollec-
tive programming model is defined, which follows the BSP
style and allows users to invoke collective communication
operations to synchronize parallel workers. There are two
levels of parallelism: inter-node level and intra-node level.
Failure recovery poses a challenge because the execution
flow in the MapCollective model is very flexible. Currently
job level failure recovery is applied. Worker-level recovery
by resynchronizing execution states between new launched
workers and other old live workers is also under investigation.

All these ideas have been implemented in the Harp open
source library. By plugging Harp into Hadoop, the MapCollec-

Shuffle
M M M M

Collective Communication

M M M M

R R

MapCollective ModelMapReduce Model

YARN

MapReduce V2

Harp

MapReduce Applications
MapCollective
Applications

Application

Framework

Resource Manager

Architecture

Parallelism Model

Fig. 1. The Parallelism Model and Plug-in Concept of Harp

tive model can be expressed in a MapReduce framework and
enhance Hadoop with efficient in-memory collective commu-
nication that enables support for a variety of machine learning
applications (see Fig. 1).

IV. MACHINE LEARNING LIBRARY

The machine learning library is built on top of Harp. The
structure of model data, the computation and the communica-
tion patterns in machine learning applications are studied and
categorized into different computation models. Because of the
high frequencies of model communication, caching the model
data to memory and performing in-memory communication
is necessary. In addition, optimized collective communication
on in-memory model data can improve model update rate and
output a converged model result in shorter time than other
communication methods.

Here K-means and MDS are two applications implemented
as examples (see Table. I). Both K-means and MDS are
tested on Big Red II [23]. K-means runs on 500M 3D points
with 10K clusters and 5M 3D points with 1M clusters. The
execution times and speedup are shown in Fig. 2a and Fig.
2b. The speedup is close to linear. MDS runs with 100K,
200K, 300K and 400K points, each of which represents a
gene sequence [24]. The execution times and speedup are
seen in Fig. 2c and Fig. 2d. In most cases, the speedup
lines are close to linear. Only 100K problems show low
efficiency. This is a standard effect in distributed computing
where the small problem size reduces compute time compared
to communication. The research of other machine learning
applications with big model data such as LDA [25] is ongoing.

V. CONCLUSION

The research shows that a collective communication layer
on the software stack of big data analytics can help abstracting
model data and expressing model data communication in iter-
ative machine learning applications. Future research directions
in the next 6 to 12 months will focus on understanding



8 16 32 64 128
Number of Nodes

0

1000

2000

3000

4000

5000

6000

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)
500Mp10Kc 5Mp1Mc

(a)

8 16 32 64 128
Number of Nodes

0

20

40

60

80

100

120

140

Sp
ee

du
p

500Mp10Kc 5Mp1Mc

(b)

8 16 32 64 128
Number of Nodes

0

1000

2000

3000

4000

5000

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

100K
200K

300K
400K

(c)

1 8 16 32 64 128
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

100K 200K 300K

(d)

Fig. 2. (a) Execution Time of K-Means (b) Speedup of K-Means (c) Execution Time of MDS (d) Speedup of MDS

TABLE I
MACHINE LEARNING APPLICATIONS ON TOP OF HARP

Application Model Size Collective
Communication

K-means
Clustering

Usually in MB level,
but can grow to GB
level

allreduce

WDA-
SMACOF A few MBs allgather & allreduce

LDA
From a few GBs to
10s of GBs, or even
larger

other model sync
methods

the characteristics of data, computation and communication
patterns in many other machine learning applications. The
current study imply that communication plays an important
role in iterative computation. Similar features may apply to
other applications and result in a general and effective com-
munication abstraction in many machine learning applications.

ACKNOWLEDGMENTS

The author gratefully acknowledges support from Intel
Parallel Computing Center (IPCC) Grant, NSF 1443054 CIF21
DIBBs 1443054 Grant, and NSF OCI 1149432 CAREER
Grant; The author appreciates the system support offered by
FutureSystems at Indiana University.

REFERENCES

[1] R. Kohavi and F. Provost, “Glossary of terms,” http://ai.stanford.edu
/∼ronnyk/glossary.html.

[2] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[3] “Hadoop,” http://hadoop.apache.org.
[4] C.-T. Chu et al., “Map-reduce for machine learning on multicore,” in

NIPS, vol. 19, 2007, p. 281.
[5] “Apache Mahout,” https://mahout.apache.org.
[6] J. Ekanayake et al., “Twister: a runtime for iterative mapreduce,”

in Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, 2010, pp. 810–818.

[7] M. Zaharia et al., “Spark: cluster computing with working sets,” in
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing, vol. 10, 2010, p. 10.

[8] S. Kamburugamuve, “Survey of apache big data stack,” Indiana Univer-
sity, Tech. Rep., 2013, http://grids.ucs.indiana.edu/ptliupages/publicat
ions/survey apache big data stack.pdf.

[9] E. Chan et al., “Collective communication: theory, practice, and experi-
ence,” Concurrency and Computation: Practice and Experience, vol. 19,
no. 13, pp. 1749–1783, 2007.

[10] B. Zhang, Y. Ruan, and J. Qiu, “Harp: collective communication on
hadoop,” in Proceedings of IEEE International Conference on Cloud
Engineering (IC2E), 2015.

[11] S. Lloyd, “Least squares quantization in pcm,” Information Theory, IEEE
Transactions on, vol. 28, no. 2, pp. 129–137, 1982.

[12] Y. Ruan and G. Fox, “A robust and scalable solution for interpolative
multidimensional scaling with weighting,” in IEEE 9th International
Conference on eScience, 2013, pp. 61–69.

[13] G. Malewicz et al., “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 135–146.

[14] “Giraph,” https://giraph.apache.org.
[15] Y. Low et al., “Distributed graphlab: a framework for machine learning

and data mining in the cloud,” Proceedings of the VLDB Endowment,
vol. 5, no. 8, pp. 716–727, 2012.

[16] J. E. Gonzalez et al., “PowerGraph: distributed graph-parallel computa-
tion on natural graphs,” in OSDI, vol. 12, 2012, p. 2.

[17] M. Li et al., “Scaling distributed machine learning with the parameter
server,” in OSDI, 2014, pp. 583–598.

[18] E. P. Xing et al., “Petuum: a new platform for distributed machine
learning on big data,” in KDD, 2013.

[19] J. Qiu and B. Zhang, “Mammoth data in the cloud: clustering social
images,” in Clouds, Grids and Big Data, ser. Advances in Parallel
Computing. IOS Press, 2013.

[20] B. Zhang and J. Qiu, “High performance clustering of social images in
a map-collective programming model,” in Proceedings of the 4th annual
Symposium on Cloud Computing, 2013.

[21] M. Chowdhury et al., “Managing data transfers in computer clusters with
orchestra,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4, pp. 98–109, 2011.

[22] T. Gunarathne, J. Qiu, and D. Gannon, “Towards a collective layer in
the big data stack,” in Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on, 2014, pp. 236–245.

[23] “Big Red II,” https://kb.iu.edu/data/bcqt.html.
[24] Y. Ruan et al., “Integration of clustering and multidimensional scaling

to determine phylogenetic trees as spherical phylograms visualized in
3 dimensions,” in Cluster, Cloud and Grid Computing (CCGrid), 2014
14th IEEE/ACM International Symposium on, 2014, pp. 720–729.

[25] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
The Journal of Machine Learning Research, vol. 3, pp. 993–102, 2003.


