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Abstract—This paper investigates a novel approach to paral-
lelization of machine learning algorithms using model rotation
as an effective parallel computation model. We identify the
importance of model rotation owing to its ability to shift the
latest model updates to a neighboring computation, thereby
guaranteeing model consistency which is hard to achieve
in other computation models. We distinguish computation
model, programming interface and implementation as design
principles, and give new optimizations for the model rotation
approach to parameter updates using Intel multi-/many-core
architectures. Our pipeline and time control optimizations
further allow us to obtain fine-grained parallelism and load
balance which are necessary to achieve reliable scaling results.
We show our solution to be effective in two representative algo-
rithms: Collapsed Gibbs Sampling (CGS) for Latent Dirichlet
Allocation and Stochastic Gradient Descent (SGD) for matrix
factorization, and give better performance than previous work
by us and others. Our model rotation solution leads to a
general approach for parallelizing machine learning algorithms
efficiently.

Keywords-machine learning; big data; big model; model
rotation; pipelining; time control

I. INTRODUCTION

Machine learning has been successfully applied in such
diverse application domains as text mining [1], recommender
systems [2], tag prediction of images [3], videos and music
[4], speech recognition [5], and bioinformatics [6]. These
big data applications may involve matrices with billions of
entries for training data and model parameters. For example,
recommender systems help more than a billion people search
among millions of items at Amazon or Facebook1 to find
those that are most relevant to them. Innovative distributed
algorithm design is necessary to allow us to scale to these
constantly growing datasets.

However, the growth of data size makes it hard to employ
many machine learning algorithms that scale to our needs.
A huge amount of effort has been invested in parallelizing
machine learning algorithms, and yet much of the literature
deals with application or framework-based approach (e.g.
MPI, MapReduce/Iterative MapReduce, Graph/BSP, Param-
eter Server, and Multicore/GPU approaches). It remains
unclear what is the best approach to parallelization. To

1 https://code.facebook.com/posts/861999383875667/recommending-ite
ms-to-more-than-a-billion-people/

bridge the gap, we investigate a systematic approach based
on “model rotation”, which effectively expresses kernel com-
putation characteristics and synchronization mechanisms for
a scalable solution. We believe that understanding of kernel
computations in big data analytics will foster both system
and algorithm innovations, subsequently leading to tools that
are useful for many people.

Our approach involves two computation concepts: itera-
tive computation and model rotation. The former applies a
computation (e.g. Map task) or function repeatedly, using
output from one iteration as the input of the next iteration.
Iterative computation has the advantage of solving complex
problems using simple functions. The computation can stop
when it converges or meets an applications approxima-
tion criteria. Well-known examples include Expectation-
Maximization (EM), as well as deep learning and graph
algorithms. We identify the importance of iterative computa-
tion for machine learning and data analytics and our initial
framework Twister [7] caches invariant training (or input)
data in memory, thereby supporting iterative algorithms
effectively.

In this paper, we focus on addressing those difficult
problems previously mentioned, when “Big Model” param-
eters exceed the computation capacity of a single node
machine. This implies that common practices such as Broad-
cast, AllReduce, Scatter-Gather-AllGather and asynchronous
Point-to-Point communication are less attractive in dealing
with such obstacles. Instead we apply an alternative solution
involving fine-grained synchronization mechanisms in han-
dling data consistency vs. scaling, and observe that model
rotation shifts the latest model updates to a neighboring
computation, which guarantees data consistency among dis-
tributed workers. This method can scale to large-scale prob-
lems based on the observation that some machine learning
algorithms can execute out of order while still converging,
which we leverage through time control to sample subsets
of the training data for model updates.

We design and implement a novel approach that en-
ables model rotation pipelining within a machine via mul-
tithreading (or Intels DAAL) and across machines via our
framework Harp (Hadoop plugin) [8], with the details of
the parallelization process for machine learning algorithms
defined in Figure 1. We apply our model rotation solution to



two algorithms: (i) Markov Chain Monte Carlo Type algo-
rithm Collapse Gibbs Sampling (CGS) for Latent Dirichlet
Allocation (LDA), commonly used for topic modeling in text
mining; (ii) Gradient Optimization Type algorithm Stochas-
tic Gradient Descent (SGD) for matrix factorization widely
applied in recommendation systems.

Our experiments have successfully run on different
datasets (29.9 billion tokens for CGS and 16 billion cells
for SGD) on 30x60, 60x30 or 90x20 nodes and threads (a
total of 1800 threads) on Intel Xeon/Haswell architectures.
We compare Harp with state-of-the-art model rotation im-
plementations (Petuum for CGS and NOMAD for SGD) by
running them side-by-side on the same cluster. The results
show that our solution can achieve similar or faster model
convergence speed. Worthy of note is that the size of CGS
model parameters used for our CGS/LDA experiment (76.2
million documents, 1 million vocabulary, 29.9 billion tokens,
10k topics) is the largest in the text mining literature that
we are aware of to date.

The rest of this paper is organized as follows. Section
2 illustrate some machine learning algorithms. Section 3
talks about the computation model. Section 4 describes the
model rotation programming interface. Section 5 explains
the improvement on model rotation implementation. Section
6 gives algorithms examples of using model rotation. Section
7 shows the experiment results. Section 8 describes the
related work. Section 9 gives the conclusion.

II. MODEL ROTATION DESIGN PRINCIPLES

To parallelize big data machine learning applications, the
model rotation solution is designed under the guidance of
several principles. These principles include four aspects (see
Fig. 1):

1) What kind of algorithm should be used for the big
data machine learning application?: Before parallelizing an
application with model rotation, it is important to identify
which algorithm to use. A big data machine learning appli-
cation can be parallelized with different algorithms. In this
paper, Gibbs Sampling is selected to solve LDA application
in topic modeling and Stochastic Gradient Descent is chosen
to solve matrix factorization in recommendation systems
(see Section III). LDA can also be implemented by other
algorithms such as Collapsed Variational Bayesian and Ma-
trix factorization can be implemented by Cyclic Coordinate
Descent.

2) Which computation model is suitable for the algo-
rithm?: We use the concept “computation model” to de-
scribe a parallel algorithm without associating any particular
parallel execution environment. One algorithm can be par-
allelized by using different computation models. We present
model rotation based computation model has advantages
compared with other computation models (see Section III).

3) How is the programming interface designed for the
computation model?: Programming interfaces are provided

Machine Learning 
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Programming 
Interface

Implementation

Figure 1. A solution for big data machine learning application includes
decisions on algorithms, computation models, programming interfaces, and
implementation.

by parallelization tools to express the parallel algorithm
in a computation model. Some tools are only allowed to
express one computation model. We express the model
rotation-based computation model using the MapCollective
programming interface [1] (see Section IV).

4) How the programming interface is implemented?:
A programming interface can be implemented in different
mechanisms. Each tool provides a specific implementation
for a programming interface. In this paper, we optimize
model rotation through pipelining and time control two
mechanisms (see Section IV).

III. ALGORITHMS AND COMPUTATION MODELS

Many machine learning algorithms are designed as an iter-
ative computation in which model parameters are iteratively
updated according to the data entries and the current model
parameter values. In this section, we use Gibbs Sampling and
Stochastic Gradient Descent two examples to show how the
machine learning algorithms work in the sequential code.
For the algorithm parallelization, we summarize four com-
putation models. Through discussing how to map algorithms
to computation models and how to map computation models
to parallel execution environments, we highlight the benefits
of using a model rotation-based computation model.

A. Algorithms

Many machine learning algorithms are built on iterative
computation, such as EM, MCMC and Gradient Optimiza-
tion which are the workhorses for the data analysis applica-
tions.

In general, iterative algorithms can be formulated as

At = F (D,At−1) (1)

Here, D is the dataset and A is model parameters, F is
the model update function. The algorithm keeps updating



model A until convergence (by reaching a stop criterion or
fixed number of iterations).

Taking K-means as an example. xi ∈ D is one data
point, C1..K is K centroids and Zi ∈ 1..K is the mem-
bership of each data point. F works in two steps as
Zt
i =argmin

k
L(xi, C

t−1
k ), and Ct

k = 1
n

∑
xi∈D 1(Zt

i =

k) ∗ xi. Here, L is distance function and 1 as indicator
function. C and Z are two parts of the model and update
sequences on them have a bipartite dependency relationship,
in which Zi can be updated in parallel when Ct−1

k all ready
but Ck must wait for the output of Z|Zi = k.

The dependencies exist inside the model structure and
cross the boundary of iterations make iterative algorithms
difficult to be parallelized.

According a general IID (independent and identically
distributed) assumption on dataset, the data points in D are
normally independent and be partitioned among all nodes.
When dataset and model are large and partitioned to N
nodes, model Ap on node p now is updated by

At
p = F (D,At−1) = F (Dp, A

t−1) (2)

To access distributed At−1 is difficult and different ap-
proaches exist that lead to different computation models.

Since iterative algorithms have an interesting feature that
they converges even the consistency of model are not guar-
anteed to some extent, one popular approach tries to make
the algorithm working in asynchronous mode by giving up
the model consistency and even breaking the dependency
constrains between iterations. It can works on model A with
older version i, as

At
p = F (Dp, A

t−i) (3)

Another approach tries to find an arrangement on the
order of updates to make independent parts running in
parallel while keeping all the dependency constrains. When
the model updates only need inputs from local Dp and
local At−1

p , it should be much beneficial for efficiency since
there are no network data transfer necessary. Some kind of
algorithms can match this requirement by adjusting the order
of their model updates.

At
p = F (Dp, A

t−1
p ) (4)

1) Collapsed Gibbs Sampling (CGS): This algorithm
goes through all the tokens in a collection of documents
and computes the topic assignment on each token Xij = w
by sampling from a multinomial distribution of a conditional
probability of Zij (see Fig. 2):

p
(
Zij = k | Z¬ij , Xij , α, β

)
∝

N¬ijwk + β∑
wN

¬ij
wk + V β

(
M¬ijkj + α

) (5)

Input: training data X , the number of topics K, hyper-
paramters α, β

Output: topic assignment matrix Z, topic-document matrix
M , word-topic matrix N
Initialize M,N to zeros
for document j ∈ [1, D] do

for token position i in document j do
Zij = k ∼Mult( 1

K )
Mkj += 1;Nwk += 1

end for
end for
repeat

for document j ∈ [1, D] do
for token position i in document j do
Mkj −= 1;Nwk −= 1
Zij = k′ ∼ p(Zij = k|rest) {sample a new topic
according to Eq. 5}
Mk′j += 1;Nwk′ += 1

end for
end for

until convergence

Figure 2. The Sequential Algorithm of CGS

Here superscript ¬ij means that the corresponding token is
excluded. V is the vocabulary size. Nwk is the token count
of a word w assigned to topic k in K topics, and Mkj is
the token count of a topic k assigned in document j. α, β
are hyperparameters. The process of probability calculation
can be optimized by SparseLDA [2] in which the time
complexity is not based on the total number of topics K
but depends on the non-zero token counts of a document j
and a word w. As the model converges, the sizes of M and
N shrink, resulting the decrease of the computation time
complexity.

2) Stochastic Gradient Descent (SGD): In matrix factor-
ization, we use SGD decomposes a m × n matrix V to a
m × K matrix W and a K × n matrix H (see Fig. 3).
When an element Vij is computed, the related row Wi∗ and
column H∗j are updated. The gradient calculation of the
next element Vi′j′ depends on the previous updates in Wi′∗
and H∗j′ .

B. Computation Models

The detailed description of computation models can be
found in previous work [3]. We define computation models
based on two properties. One is whether the computation
model uses synchronous or asynchronous algorithms for
parallelization. Another looks at whether the model pa-
rameters used in computation are the latest or stale. Both
the synchronization policies and the model consistency can
impact the model convergence speed (see Table I). There are
two computation models using the synchronized algorithm
and the latest model parameters. One is through model



Input: training matrix V , the number of features K, hyper-
paramters λ, ε

Output: model matrix W and H
Initialize W,H to UniformReal(0, 1/

√
K)

repeat
for Vij ∈ V do
{use L2 norm to calculate the gradients}
error =Wi∗H∗j − Vij
Wi∗ =Wi∗ − ε(error ·Hᵀ

∗j + λWi∗)
H∗j = H∗j − ε(error ·W ᵀ

i∗ + λH∗j)
end for

until convergence

Figure 3. The Sequential Algorithm of SGD

blocking, and another is through model rotation. The third
computation model uses synchronized algorithm with the
stale model parameters while the fourth uses a synchronous
algorithm with the stale model parameters.

Table I
COMPUTATION MODELS

The Latest Model The Stale Model
Synchronized

Algorithm
A (model blocking)
B (model rotation) C

Asynchronous
Algorithm N/A D

Though both sequential algorithms of CGS and SGD
require that the model parameter update has to depend on
the current values of the model parameters, many practices
show that these algorithms still work when the model
parameters used in the computation are not the most updated
[4][5][HogWild]. Therefore both CGS and SGD can be
implemented by any of the four computation models. But
some algorithms such as Expectation-Maximization type
algorithms rely on synchronization barriers so that they can
only be implemented by computation models with synchro-
nized algorithms but not with asynchronous algorithms. For
CGS and SGD, it is better to use computation models with
the latest model parameters rather than those using the stale
model parameters. The reason is that these computation
models match the design of the original sequential algo-
rithms and result in effective model parameter updates with
the latest model parameters.

When mapping computation models to parallel execution
environments, we focus our discussion on two types of
environments. One is the distributed environment where
workers are processes and communicate through network
interfaces. Another is the multi-thread environment where
workers are CPU threads that communicate through shared
memory. Then we go though each computation model
and discuss how they can be implemented in the parallel
execution environments. The computation model with the
synchronized algorithm and the latest model parameters can

be performed through model blocking or model rotation.
However model blocking is seldom used due to the high
locking cost involved. In contrast, model rotation is applied
in many implementations where it can occur as communica-
tion among processes on a ring topology, or synchronization
between threads. Instead of using a static or predefined or-
dering, model rotation can be implemented through dynamic
scheduling which provides a dynamic ordering to avoid
conflicts between model parameter updates.

When the stale model parameters are used, the com-
putation model with the synchronized algorithm can be
implemented via “allgather” and “allreduce”. By doing so,
the routing can be optimized while each worker retains
a full copy of the model. For big models, it can cause
high memory usage and make applications fail to scale.
Another way is to let each worker only fetch the model
parameters related to the local training data. This method
saves memory usage but has less opportunity for routing
optimization. When changing to the asynchronous algorithm,
the computation model reduces the model synchronization
overhead. However, since each worker directly communi-
cates large numbers of model parameters, the routing among
the workers cannot be optimized. Without synchronization
barriers, this computation model does not aim for complete
model synchronization so that the model convergence speed
is affected by the real network speed.

Thus the model rotation shows many advantages. Unlike
computation models using stale model parameters, there
is no additional local copy for model parameters fetched
during the synchronization, meaning the memory usage is
low. Plus in a distributed environment, the communication
only happens between two neighboring workers so that the
routing can be easily optimized.

IV. PROGRAMMING INTERFACE AND IMPLEMENTATION

These advantages of model rotation-based computation
model inspire us to use it in expressing the parallel machine
learning algorithms based on this computation model. In this
section, we introduce our programming interface for model
rotation under the MapCollective programming interface. As
opposed to MapReduce which uses “shuffle” operation to
synchronize intermediate data from Map to Reduce tasks,
MapCollective synchronizes Map tasks through collective
communication operation APIs [1]. Since the computation
load on each node is unbalanced, a straggler may harm the
efficiency of the model rotation. We further introduce two
mechanisms pipelining and time control to implement the
model rotation programming interface. Finally, we use CGS
and SGD as two agorithm examples under the model rotation
solution.

A. Data Abstraction and Model Abstraction

Training data entries describe the relationships among
entities. Thus the structure of the data can be generalized as



a multidimensional array. Assuming there are two entities,
the data can be expressed as a matrix and each data entry
can be expressed as a cell in the matrix. For example, the
data in CGS is a document-word matrix. In SGD, the data
is explicitly expressed as a matrix. When it is applied to
recommendation systems, each row of the matrix represents
a user and each column is a movie, thus every element
represents the rating of a user to a movie.

In this relational data model, each entity has a related
model parameter vector. Back to the matrix structured train-
ing data, a row has a row-related model parameter vector as
does a column. Based on the model settings, the number of
elements per vector can be very large. As a result both row-
related and column-related models might be large matrices.
To avoid synchronizing two model matrices at the same time,
the data are split by rows or by columns so that one model
is stored in local with the data and only the other is required
to be rotated.

We abstract the model matrix for rotation as a distributed
dataset. The dataset is organized as partitions and indexed
with partition IDs. Each partition holds a row/column’s
related model parameter vector. A partition can be expressed
as array if the vector is dense, or as a key-value pair if sparse.

B. Operation API

We express model rotation as a collective communication
operation among Map tasks. The operation takes the model
portion owned by the processes and performs the rotation.
In default, the operation sends the model partitions to the
next neighbor and receives the model partitions from the
last neighbor in a predefined ring topology of workers. The
advanced option allows us to remap model partitions to
workers by exchanging the model partitions on each worker.
For local computation inside each Map task, We simply ex-
press the model rotation-based computation model in multi-
threading through a programming interface of “schedule-
execute”. A scheduler employs a user-defined function to
maintain the ordering of model parameter updates in model
rotation dynamically and keep the workload balance on each
threads.

Under the MapCollective interfaces, programming model
rotation is very simple. Only one API is used to manage
the model rotation. Since the local computation only needs
to process the model obtained during the rotation without
considering the parallel model updates from other tasks,
the code of a parallel machine learning algorithm can
be modularized as a process of getting model partitions,
performing computation and updating (see Fig. 4).

C. Pipelining

Pipelining is one mechanism we use to optimize the model
rotation implementation. Taking the matrix structured data
as an example, and assuming that the column-related model
matrix is the one for model rotation, we divide it into two

protected void mapCollective(KeyValReader reader) {
Map data = createData(reader);
Table model = createModel();
Rotation rotation = createRotation(model);
for i = 0 to number of iterations do

for j = 0 to number of workers do
Table model = rotation.get();
compute(data, model);
rotation.submit(model);

end for
end for
}

Figure 4. Model Rotation Programming Interface

sets and evenly distribute them across all the workers. We
call these two model splits Model I and Model II (see
Fig. 5a). The pipelined model rotation is conducted in the
following way (see Fig. 5b): all the workers compute Model
I with its related data. Then they start to shift Model I
and at the same time they compute Model II. When the
computation on Model II is completed, the workers wait
for the completion of Model I rotation, and then start to
compute Model I again when the rotation is finished. Thus
the communication is overlapped with the computation.
This pipelining mechanism works at the dataset level where
each time a chunk of model parameters are computed
and communicated. In experiments, communicating model
parameters in large batches is more efficient than flooding
the network with small messages [6].

D. Time Control

We introduce another mechanism called time control
to improve the efficiency of the model rotation. Since a
straggler may slow down the whole execution of the model
rotation, we use a timer to control the computation time and
balance the computation load on each worker.

To describe the mechanism of time control, we take matrix
structured training data as an example again. Assuming each
worker caches rows of data and row-related model parame-
ters and owns partitions of column-related model parameters
for rotation, the local computation is performed on the data
related to the column model owned by the worker. Through
the “schedule-execute” programming interface, we split the
data and the model into small blocks and allow the scheduler
to dispatch them to threads (see Fig. 5c). The scheduler
randomly selects blocks but avoids computation conflicts
on the same row or column. Once a block is processed
by a thread, it reports the status back to the scheduler.
Then the scheduler dispatches another free block to the
thread available. We set a timer to oversee the training’s
progress. When the appointed time arrives, the scheduler
stops dispatching new blocks and the execution ends (see
Fig. 5a).
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Thus the semantics of the “iteration” change when using
time control. All the model partitions are still rotated for
one round per iteration, but only a partial training dataset is
processed in one iteration. However, evidence suggests this
mechanism does not affect the level of model convergence
finally achieved in CGS and SGD. The reason is that in
these algorithms, a model parameter update only depends
on an element of the training data matrix. As a result, all
the model parameters can still be updated in one iteration. In
addition, we tune the time setting to keeps the total amount
of data entries trained within bounds and make sure the
time used in computation can hide the communication time.
This improves the efficiency of model rotation and further
improves the model convergence speed.

E. Algorithm Examples

1) CGS: The training tokens are split according to the
document and distributed to workers. There are also four
models. The first one is the topic assignment on each
token, which is stored with the training data. The next two
are document-topic matrix and word-topic matrix. Because
the training data is split by document, the document-topic
matrix is partitioned with the documents while the word-
topic matrix is rotated between workers. The last one is the
token count sum on each topic. This is a small array with
length equal to the number of topics, where all the elements
are required in the local computation. As a result, we simply
synchronize it with “allreduce” operation. We partition the
documents on each worker into blocks. Inside each block,
inversed indexing is used to group tokens by the word. The
words’ topic counts owned by the worker are also split into
blocks. Thus by selecting a document block ID and a word
block ID, we can train a small set of data and update the
related model parameters. Because the computation time per
token changes as the model converges, the amount of tokens
which can be trained during a fixed time limit is growing
larger. As a result, for time tuning, we keep an upper bound
and a lower bound for the tokens trained in the time limit.

2) SGD: Both W and H are two model matrices. As-
suming n < m, then V is regrouped by rows, W is
partitioned with V , and H is the model for rotation. Since
the computation load in each iteration does not change like
what in CGS, we only tune the time limit to a specific value.
By measuring the computation time and communication time
at the first iteration, we estimate the ratio of computation
cost and communication cost, then set the time limit to
a value which meets the minimum requirement to overlap
communication time with computation time.

V. EXPERIMENTS

In this section, we test the efficiency of our model rotation
approach using CGS and SGD. For each algorithm, we
check the effectiveness of using pipeline and time control,
and compare our implementations with other using different
designs. We show that our solution has reliable scalability.

A. Training Dataset and Model Parameter Settings

Two datasets are used in the test. One is for CGS
and another is for SGD (see Table. II). Both datasets are
generated from a subset of the “ClueWeb09” dataset2. The
model parameter settings result in similar sizes of the models
for rotation. In CGS, theoretically the setting can bring the
maximum 10 billion parameters to the model for rotation,
but the real number is approximately 2 billion. In SGD, the
model for rotation is dense with also approximately 2 billion
model parameters.

B. Comparison Implementations

Four implementations are used in the tests. In CGS, we
compare Harp CGS implementation with and without time
control and Petuum LDA. In SGD, we use Harp SGD
implementation with and without time control and NOMAD.

We focus on the comparison among different implementa-
tions using model rotation. The purpose is to show how the
different programming interfaces and the related implemen-
tations can affect the model convergence speed. There are

2A collection of web pages, http://lemurproject.org/clueweb09.php/



Table II
TRAINING DATASETS

CGS Dataset Number of
Documents Vocabulary Number of

Tokens
Number of

Topics Model for Rotation

clueweb 76.2M 1.0M 29.9B 10K Word-Topic Matrix
(Initial Size 17.1GB)

SGD Dataset Number of
Rows

Number of
Columns

Number of
Cells

Number of
Features Model for Rotation

clueweb 76.2M 1.0M 16.0B 2K Column Model Matrix
(16.0GB)

subtle differences in these implementations which can affect
the experiment observation. Petuum LDA and NOMAD
both are implemented in C++11 while Harp CGS/SGD are
implemented in Java 8. Petuum LDA uses Open MPI for
multi-processes and POSIX threads for multi-threading and
ZeroMQ for communication. Though Petuum uses model
rotation-based computation model in the distributed envi-
ronment, it uses the computation model with asynchronous
algorithm and stale model parameters in multi-threading,
causing small difference compared with model rotation
in model convergence. NOMAD uses MPICH2 for multi-
process, Intel Thread Building Blocks for mult-threading and
MPI Send/MPI Recv for communication. In NOMAD, the
destination of each parameter shifting is randomly selected
without following any ring topology.

C. Parallel Execution Environment

The Juliet cluster at Indiana University contains 32 nodes
each with two 18-core 36-thread Xeon E5-2699 v3 Intel
Haswell processors and 96 nodes each with two 12-core
24-thread Xeon E5-2670 v3 Intel Haswell processors. All
the nodes have 128GB memory and are connected with
Infiniband. During the test, JVM memory is set to “-
Xmx120000m -Xms120000m -Xss4m -Xmn30000m” and
IPoIB is used for communication.

The implementations are tested in three scales. One is 30
Xeon E5-2699 nodes each with 60 threads (30x60). Another
is 60 Xeon E5-2670 nodes each with 30 threads (60x30).
The third one is a heterogeneous environment which uses
30 Xeon E5-2699 nodes and 60 Xeon E5-2670 nodes to
form a cluster of 90 nodes each with 20 threads (90x20).
All the three parallel execution environments have the same
parallelism with 1800 threads in total. With using the same
dataset and the same model settings, the data and model size
for computation and communication per worker does not
change when the scale changes. In this way, the scalability
of model rotation can be presented.

D. CGS Performance Results

The performance results are presented in Fig. 6. We first
describe the model convergence speed on different scales.
And then we use the results on 60x30 to analyze the
efficiency of model rotation. We also provide other detailed
experiment settings here. The hyper-parameters α and β are

both fixed to 0.01 during the whole execution without any
tuning. For Harp with time control, we set the computation
time after each model shifting to 1000ms on 30x60, 500ms
on 60x30 and 333ms on 90x20 for the first iteration. Thus the
total computation time for each worker at the first iteration
is 60s. We enable time tuning so that the timer settings can
be adjusted for the later iterations according to the current
training progress.

Through examining the model likelihood achieved by the
training time, the results on three scales all show that Harp
with time control has the fastest model convergence speed
compared with Petuum and Harp with no time control (see
Fig. 6a, 6b, 6c). At the same time, Petuum is the second and
Harp with no time control is the slowest. As time elapses,
the model likelihood achieved by Petuum gets close to the
value achieved by Harp with time control. We take the results
on 60x30 (see Fig. 6b) as an example. When the model
likelihood achieves −1.41 × 1011 and its change is within
1.00 × 109, Harp with time control has a 1.16× speedup
over Petuum and a 1.74× speedup over Harp with no time
control. When the model likelihood achieves −1.38× 1011

and its change is within 5.00× 108, Harp with time control
has 1.15× speedup over Petuum and a 1.65× speedup over
Harp with no time control. When the model likelihood
achieves −1.36× 1011 and its change is within 2.00× 108,
Harp with time control is 1.14× faster than Petuum and
1.55× faster than Harp with no time control.

To understand why Harp implementation with pipelining
and time control performs better than Petuum, we still look
into the results on 60x30 without repeating the similar
results achieved on 30x60 and 90x20. Fig. 6d shows the
model likelihood achieved by different implementations ac-
cording to the number of iterations. Because of using the
same computation model, Harp achieves the same model
likelihood as Petuum. When time control is applied, Harp
only training partial tokens per iteration so that the model
likelihood achieved per iteration is not as high as the other
two. However, when time control is used, the efficiency of
pipelining in model rotation is improved. Fig. 6e shows the
trend of iteration execution time as the time elapses. The
computation time per iteration in Harp with time control
is almost overlapped with iteration execution time, which
means communication time is completely hidden inside of
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Figure 6. Performance Results on CGS (a) Model Likelihood vs. Training Time on 30x60 (b) Model Likelihood vs. Training Time on 60x30 (c) Model
Likelihood vs. Training Time on 90x20 (d) Model Likelihood vs. Iteration Number on 60x30 (e) The Iteration Execution Time and the Computation Time
per Iteration on 60x30 (f) The Coefficient of Variation of All the Workers’ Iteration Computation Time on 60x30 (g) Model Likelihood vs. Training Time
on 30x60 when a straggler exists (h) The Coefficient of Variation of Iteration Computation Time of All the Workers on 30x60 when a straggler exists

the computation time. Thus there is no additional overhead
for model rotation. In contrast, both Petuum and Harp with
no time control have high communication overhead in each
iteration. Though pipelining is applied in both implementa-
tions, the uneven computation load on each worker makes
overlapping the computation time and the communication
time be difficult. Though Petuum’s computation is highly
optimized, its parameter level messaging pipelining is not
efficient, even causing higher communication overhead com-
pared with Harp with no time control. Fig. 6f gives a detailed
look of the variation of the computation times from all the
workers on each iteration. Harp with time control shows
much lower variation than other implementations.

Using time control also makes the performance results
more reliable. Fig. 6g show that on 30x60 when one node
becomes a straggler (10 times slower in computation),
Harp implementation with time control can maintain model
convergence speed while Petuum becomes much slower. Fig.
6h shows the variation of the computation times from all the
workers on each iteration. Even when one straggler exists,
the variation of the Harp implementation with time control
does not change much. But the variation of Petuum becomes
very unstable.

E. SGD Performance Results

we present the performance results in Fig. 7. We firstly
show the model convergence speed on the three scales. Then
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Figure 7. Performance Results on SGD (a) RMSE vs. Training Time on 30x60 (b) RMSE vs. Training Time on 60x30 (c) RMSE vs. Training Time
on 90x20 (d) RMSE vs. Model Update Count on 60x30 (e) Model Update Count vs. Traning Time on 60x30 (f) The Coefficient of Variation of All the
Workers’ Iteration Computation Time on 60x30 (g) Model Likelihood vs. Training Time on 60x30 when a straggler exists (h) The Coefficient of Variation
of Model Update Counts of All the Workers on 60x30 when a straggler exists

we use the results on 60x30 as an example to explain the
efficiency of using model rotation. Here are the detailed
settings in SGD algorithm. For the training hyperparameters,
λ is set to 0.01 and ε is set to 0.001. Parameter tuning is
disabled during the execution. For the timer settings, we use
the same values at what we use in CGS experiments. The
model convergence speed is evaluated by the RMSE value
calculated by the trained W,H model matrices on the test
dataset.

The performance results on 30x60, 60x30 and 90x20
are presented in Fig. 7a, 7b, and 7c. What we observe
in these experiments are similar: Harp with time control
performs better than the one with no time control. NOMAD

is fast at the beginning. However, when the model is about
to converge, its speed reduces and results similar model
convergence speed and even slower than the speed of the
Harp implementation with time control. We take the results
on 60x30 (see Figs. 7b) as an example. When the RMSE
value achieves 1.62 and its change is within 1.00 × 10−3,
Harp with time control is 14% slower than NOMAD but
provides a 1.77× speedup over Harp with no time control.
When the RMSE value achieves 1.61 and its change is
within 5.00 × 10−4, Harp with time control is 1% slower
than NOMAD but a 1.69× speedup over Harp with no time
control. However, when the RMSE value achieves 1.60 and
its change is within 1.00 × 10−4, Harp with time control



provides a 1.57× speedup over NOMAD and a 1.47×
speedup over Harp with no time control.

The reason causing the issue of NOMAD’s instable model
convergence speed is its random model parameter shifting
mechanism. We take a detailed look with using the results on
60x30. Fig. 7d shows that though using time control does not
train all the elements in one iteration but it still achieves the
same RMSE value as it without time control when the same
number of model updates is performed. NOMAD is even
slightly slower because the destination of model parameter
shifting is randomly selected. As a result, a model parameter
may go to the same training data partitions two successive
training steps, causing model update be not effective. This
problem is also shown in Fig. 7e. NOMAD can train more
elements than Harp using the same amount of training time.
But this does not provide effective contribution as the model
update in Harp does. Random model parameter shifting may
also cause unoptimized routing. Fig. 7f shows the variation
of the model update counts from all the workers at a training
time point. In this figure, Harp with time control shows very
little difference of the model update count on each worker.

Similar to Petuum, NOMAD is also easily affected by
stragglers. When all the parameters chose to go to the
straggler, it devours all the parameters. In this case, the
model stops converging (see Fig. 7g) and variation of the
model update counts on each worker becomes large (see
Fig. 7h).

VI. RELATED WORK

Initially many researchers attempted to implement
machine learning algorithm through a single solution.
Mahout[7], Spark Machine Learning Library and Graph-
based tools such as PowerGraph [8] are such examples.
All these implementations follow the computation model
with the synchronized algorithm and stale model parameters.
Parameter Server [9] is a type of solution which follows
the computation model with asynchronous algorithm and
stale model. They put a programming interface which allows
each worker to “push” or “pull” model parameters for local
computation. Other implementations such as Yahoo! LDA
[10][11] do not provide programming interface as Parameter
Server but still follow the same computation model. All these
implementations have two issues. One of them is that due
to the big data problem, the training data on each worker
may relate to many model parameters. Therefore the local
model size can be very large which results in high memory
usage and high communication cost. Another is that using
the local model may break the model consistency in the
original sequential algorithm so that the model convergence
speed is decreased.

Model rotation is applied in a great deal of previous
research work. NOMAD [12] and DSGD++ [5] implement
model rotation-based computation model as independent
applications, which does not provide any programming

interface. Besides they manage model rotation as point-to-
point messaging but not in a collective way. Another work,
Petuum STRADS [13], tries to include model rotation in
a general parallelism solution called “model parallelism”
through “schedule-update-aggregate” interfaces. algorithms
implemented by this framework often use model rotation but
not with clear specification. The vague abstraction results in
inconsistency between computation models and algorithm
implementations in Petuum STRADS. For example, Petuum
CGS implementation uses model rotation. But its Cyclic
Coordinate Descent (CCD) implementation uses “allgather”
operation to collect model matrices without any rotation.
The interfaces of Petuum STRADS may still work at the
model parameter level but does not manage the model as
a whole dataset, resulting in inefficiency in performance.
Despite of these shortcomings, Petuum CGS and NOMAD
are still the fastest implementations we know among open-
source implementations of the two algorithms.

VII. CONCLUSION

For the big model problem in big data machine learning
applications, this paper gives a full solution including com-
putation model selection, programming interface design, and
implementation improvements. Comparing four computa-
tion models, we conclude model rotation-based computation
model is suitable for machine learning applications with
big data and big model. Next, our MapCollective program-
ming interface is more convenient than other implementa-
tions’ parameter-level APIs. Finally the two mechanisms of
pipelining and time control in implementation can help to
improve the model convergence speed.

In the future we can apply our solution to algorithms other
than CGS and SGD. We do not claim that our model rotation
solution is the silver bullet for all machine learning applica-
tions and all parallel execution environments. For example,
when the number of parallel worker keeps increasing, each
worker may only need to handle a small amount of the data
and related model parameters. As a result, other computation
models may be more suitable depending on the property
of data and the configuration of the parallel execution
environment. As such in potential future, a research direction
is to provide configurations to parallelization solutions to
guide developers in understanding the applicability of each
solution.
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